Enrollment No.

Shree Manibhai Virani and Smt. Navalben Virani Science College (Autonomous), Rajkot

Affiliated to Saurashtra University, Rajkot

SEMESTER END EXAMINATION APRIL - 2018

M.Sc. Mathematics

16PMTCC20 - DIFFERENTIAL GEOMETRY

Duration of Exam – 3 hrs Semester – IV Max. Marks – 70

<u>Part A</u> (5x2=10 marks)Answer ALL questions

- 1. Define with example: Function of class C^k .
- 2. Define with example: Regular curve.
- 3. Define tangent vector field.
- 4. Define curvature of a curve.
- 5. Define a simple surface.

Part B (5*X*5= 25 *marks*) Answer ALL the questions

- Is the curve $(t^4, t^2, 2t+5)$ regular? Justify your answer. 6a.
- OR

6b. Define right circular helix and find the arc length of the same.

7a. Define reparametrization of a curve. If $g:[c,d] \rightarrow [a,b]$ is a reparametrization of a curve segment $r:[a,b] \to R^3$ then prove that the length of r is equal to the length of $s = r \circ g$.

OR

- Is the curve $r(t) = (\cos t, \cos^2 t, \sin t)$ regular? If so then find the equation of tangent line 7b. at $t = \frac{f}{4}$.
- Show that the length of the curve $r(t) = \left(2a\left(\sin^{-1}t + t\sqrt{1-t^2}\right), 2at^2, 4at\right)$ between the points 8a. $t = t_1$ to $t = t_2$ is $4a\sqrt{2}(t_2 - t_1)$.

OR

Show that $\Gamma(s) = \left(\frac{(1+s)^{\frac{3}{2}}}{3}, \frac{(1-s)^{\frac{3}{2}}}{3}, \frac{s}{\sqrt{2}}\right)$ is a unit speed curve and compute its Frenet – Serret 8b.

appartus.

Show that $r(s) = \frac{1}{2} \left(\cos^{-1} s, s \sqrt{1 - s^2}, 1 - s^2, 0 \right)$ is a unit speed curve and compute its Frenet – 9a. Serret appartus.

OR

9b. Find the arc length of the curver(t) = $(a\cos t, a\sin t, at\tan r)$. 10a Identify the curve $\chi^2 + y^2 - 8x - 4y - 16 = 0$ and find the curvature of the same.

OR

10b State and prove Frenet-Serret theorem

- 11a. If $x: u \to R^3$ is a simple surface and $f: v \to u$ is a co-ordinate transformation such that $y = x \circ f$ then prove that
 - i) The tangent plane to the simple surface x at P = x(f(a,b)) is equal to the tangent plane to the simple surface y at P = y(a,b).
 - ii) The normal to the surface x at P is same as the normal to the surface y at P except possibly it may have the opposite sign.

OR

- 11b. Prove that: The set of all tangent vectors to a simple surface $x: u \to R^3$ at *P* is a vector space.
- 12a. Let r(s) be a unit speed curve whose image lies on a sphere of radius r and centre m then show that $k \neq 0$. Also if $\ddagger \neq 0$ then $r - m = -\dots N - \dots$ ' $\ddagger s$ and $r^2 = \dots^2 + (\dots \uparrow^2)^2$ (where $\dots = \frac{1}{k}$ and $\ddagger = \frac{1}{\ddagger}$).

OR

12b. Let $f: X \to R^3$ be a simple surface and $f: v \to u$ is a co-ordinate transformation then prove that $y = X \circ f: v \to R^3$ is also a simple surface.

13a. Let $x: u \to R^3$ be a simple surface then prove that i) $x_{ij} = L_{ij}n + \sum_k \Gamma_{ij}{}^k x_k$

ii) For any unit speed curve $x(S) = x(x'(S), x^2(S)), k_n = \sum_{i \neq j} L_{ij}(X^i)(X^i)$ and

$$k_{s}S = \sum_{k} \left[\left(\mathbf{X}^{k} \right)^{''} + \sum_{i,j} \Gamma_{ij}^{k} \left(\mathbf{X}^{i} \right)^{'} \left(\mathbf{X}^{j} \right)^{'} \right] x_{k}.$$

OR

13b. Prove in the usual notations: $X_{ij}^{\ l} = \frac{1}{2} \sum_{k=1}^{2} g^{kl} \left(\frac{\partial g_{ik}}{\partial u^{\ j}} + \frac{\partial g_{kj}}{\partial u^{\ i}} - \frac{\partial g_{ij}}{\partial u^{\ i}} \right)$

14a. Define tangent space and normal space. Prove in the usual notations the relation $k^2 = k_n^2 + k_g^2$

OR

- 14b. Show that a unit speed curve is a helix iff there is a constant c such that $\ddagger = c \mid$.
- 15a. Define Monge patch and compute the first fundamental forms for the same. Also obtain the matrix (g_{ij}) .

OR

15b. Define Monge patch and compute the coefficients of second fundamental form and Christoffel symbols for the same.